

Hybrid Systems Development by The Siemens Westinghouse Power Corporation

Presented to:

U.S. Department of Energy Natural Gas/Renewable Energy Hybrids Workshop

7 August 2001

J. A. Ciesar
Siemens Westinghouse Power Corporation
Stationary Fuel Cells
1310 Beulah Road
Pittsburgh, Pennsylvania 15235-5098
james.ciesar@swpc.siemens.com

SOFC Technology Development Status Air Electrode Supported Tubular Cell

SOFC Technology Development Status **AES-SOFC Performance** [T = 1000°C, FU = 0.85]

SOFC Status 24 Cell Bundle

SOFC Demonstration Status Stack Hydraulics

SOFC Demonstration Status EDB-ELSAM 100 kWe Stack (48 bundles, 1152 cells)

SOFC Generators Cells to Systems

SOFC Near Term Products Two Commercial Product Classes

Atmospheric System: 250 CHP class

CHP: Combined Heat and

Power;

250 kW e

Pressurized Hybrid PH - System:

300 - 1000 kWe class

SOFC Demonstration Status Basic PSOFC/GT Cycle

- Peak Cycle Temperature 870C
- Optimum Pressure Ratio

~ 3:1

System Efficiency Horizon ~60% (NetAC/LHV)

Why High Efficiency Is Achieved

- All Fuel is Reacted by the SOFC
- SOFC Exhaust Heat is Converted to Additional Power by the Gas Turbine Cycle.
- The SOFC Generator is Pressurized ⇒ Improved SOFC Performance.

SOFC Demonstration Status PSOFC/GT Energy Utilization

SOFC Demonstration Status SCE 220 kWe PSOFC/MTG Installation

SOFC Status Demonstration Projects

SOFC Future Potential PSOFC/IRsofcR-GT Cycle ⇒ Higher Efficiency

- Peak Cycle Temperature 870C
- Optimum Pressure Ratio ~ 7:1

System Efficiency Horizon ~70% (Net AC/LHV)

Why Higher Efficiency Is Achieved

- HP SOFC Generator Operates at Higher Pressure ⇒ Higher Cell Voltage.
- Intercooled Compressor ⇒ Higher Brayton Cycle Efficiency.
- Gas Turbine Reheat ⇒ Higher Brayton Cycle Efficiency.

SOFC Future Potential PSOFC/IRsofcR-GT @ 19 MWe

SOFC Future Potential PSOFC/IRsofcR-GT 19 MWe Performance

Compressor Air Intake Rate	18.1 kg/s
Compressor Pressure Ratio	9.0 MWe
LP SOFC Generator DC Power	7.5 MWe
SOFC Gross AC Power	15.6 MWe
Gas Turbine Gross AC Power	4.1 MWe
Power System Net AC Power	19.0 MWe
Fuel Flow Rate to Power System	0.62 kg/s
Efficiency (net AC/LHV)	67.3%
Carbon Dioxide Emission	300 kg/MWh
Nitrogen Oxide Emission (Based on 1.0 ppm _v)	0.006 kg/MWh

SOFC Development Summary

- a) SOFC systems can operate on NG, liquid fuels, syn gas. High operating temperature enables SOFC/GT hybrid.
- b) Commercial 250 kWe CHP systems operate at 45-50% elec eff (75% total). 4 demos planned.
- c) 100 kWe demo already operated for >16,600 hours.
- d) First hybrid PSOFC/GT system demonstrated. 5 demos planned
- e) 300-1000 kWe PSOFC/GT systems offer 55-60% elec eff and 75+% total.
- f) Multi-MW PSOFC/GT systems will operate at 60-70% elec eff.
- g) A suitable MTG for PSOFC/GT ≥1 MWe awaits development.